Travaux par groupes, 12 Octobre 2017

exercice 1 🌲

On considère les suites de nombres réels $(x_n)_{n\in\mathbb{N}}$, $(y_n)_{n\in\mathbb{N}}$, $(z_n)_{n\in\mathbb{N}}$ définies par les relations de récurrence :

$$\begin{cases} x_{n+1} = 3x_n + 6y_n - 2z_n \\ y_{n+1} = -x_n - 2y_n + z_n \\ z_{n+1} = -2x_n - 6y_n + 3z_n \end{cases}$$

les conditions initiales x_0 , y_0 , z_0 étant données dans \mathbb{R} . On se propose d'expliciter x_n , y_n et z_n en fonction de x_0 , y_0 , z_0 et n. Pour tout $n \in \mathbb{N}$, on note $W_n = (x_n, y_n, z_n)^T$ et on considère la matrice

$$A = \left(\begin{array}{rrr} 3 & 6 & -2 \\ -1 & -2 & 1 \\ -2 & -6 & 3 \end{array}\right).$$

- 1. Montrer que pour tout $n \ge 1$, $W_n = A^n W_0$.
- 2. Calculer le polynôme caractéristique de A. Quelles sont ses valeurs propres?
- 3. On considère les deux sous-espaces vectoriels $H_1 = \ker(A I)$ et $H_2 = \ker(A 2I)$ où I est la matice identité 3×3 .
 - (a) Ces deux sous-espaces sont-ils en somme directe?
 - (b) Déterminer une base de H_1 et une base de H_2 .
 - (c) Construire une base de \mathbb{R}^3 , $\mathcal{B} = (V_1, V_2, V_3)$, formée de vecteurs de H_1 et de H_2 .
- 4. Déduire de ce qui précède une matrice $P,\,3\times3,$ inversible telle que $P^{-1}AP$ soit diagonale.
- 5. Calculer alors A^n .
- 6. Conclure en donnant les expressions de x_n , y_n et z_n en fonction de x_0 , y_0 , z_0 et n.

exercice 2 🌲

On travaille dans l'ensemble des matrices carrée $n \times n$ à coefficients dans \mathcal{C} . On note cet ensemble $\mathcal{C}^{n \times n}$.

- 1. Soit $N \in \mathbb{C}^{n \times n}$ une matrice diagonale dont les éléments diagonaux sont distincts deux à deux. Montrer que si M est une matrice telle que NM = MN alors M est diagonale. On fixe à présent une matrice $A \in \mathbb{C}^{n \times n}$ dont on suppose qu'elle possède n valeurs propres distinctes $\lambda_1, \ldots, \lambda_n$.
- 2. Expliquer pourquoi il existe une matrice inversible P telle que

$$P^{-1}AP = diag(\lambda_1, \dots, \lambda_n).$$

1. Licence Sciences L2, M34

- 3. On suppose que la matrice B commute avec A, i.e AB=BA. On pose $C=P^{-1}AP$ et $D=P^{-1}BP$.
 - (a) Vérifier que CD = DC.
 - (b) En déduire que $D = diag(\mu_1, \dots, \mu_n)$.
 - (c) Prouver que le système d'inconnues x_0, \ldots, x_{n-1}

$$\begin{cases} x_0 + \lambda_1 x_1 + \dots + \lambda_1^{n-1} x_{n-1} &= \mu_1 \\ x_0 + \lambda_2 x_1 + \dots + \lambda_2^{n-1} x_{n-1} &= \mu_2 \\ & \vdots & \vdots & \vdots \\ x_0 + \lambda_n x_1 + \dots + \lambda_n^{n-1} x_{n-1} &= \mu_n \end{cases}$$

admet une solution et une seule (a_0, \ldots, a_{n-1}) .

- (d) On introduit alors le polynôme $p(x) = a_0 + a_1x + a_2x^2 + \cdots + a_{n-1}x^{n-1}$. Que vaut C^k , $k \in IN$? Que vaut p(C)?
- (e) En déduire que B = p(A). Enoncer alors le résultat obtenu.